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ABSTRACT

Thirty audiometrically screened test participants judged the relative annoyance of two
comparison (variable level) signals and thirty standard (fixed level) signals in an adaptive paired
comparison psychoacoustic study. The signal ensemble included commuter, Stage II and Stage III
aircraft overflights, as well as synthesized aircraft noise signatures. All test signals were presented
for judgment as heard outdoors, in the presence of continuous background noise, under free-field
listening conditions in an anechoic chamber. Analyses of the performance of 30 noise metrics as
predictors of these annoyance judgments confirmed that the more complex metrics were generally
more accurate and precise predictors than the simpler methods. EPNL was slightly less accurate and
precise as a predictor of the annoyance judgments than a duration-adjusted variant of Zwicker’s
Loudness Level.
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1 INTRODUCTION

A prior study (Pearsons, Howe, Sneddon, and Fidell, 1996, g.v.) closely related to the present
study assessed the relative efficacy of several families of equivalent continuous sound level,
maximum, and time-integrated noise metrics (cf. Table 1) as predictors of the annoyance of recorded
flyovers as heard indoors. A principal finding of Pearsons et al. (1996) was that EPNL was slightly
less accurate and precise as a predictor of annoyance judgments than a duration-adjusted variant of
Zwicker’s Loudness Level. Since EPNL serves as the unit for U.S. aircraft noise certification
procedures under Part 36 of the Federal Aviation Regulations, further investigation of this finding
was undertaken in the current study.

Although Loudness Level and EPNL values of aircraft overflight noise treat the spectral
distribution of noise energy differently in several ways, a prominent difference between the two
metrics is in their sensitivity to auditory masking of higher frequency energy by lower frequency
energy. Loudness Level takes explicit account of this phenomenon, whereas EPNL does not. The
current study explores the possibility that an overall spectral shaping given to all test signals by
Pearsons et al. (1996) to simulate indoor listening conditions may have been associated with the
slight improvement in predictability of annoyance judgments afforded by Loudness Level.

1.1 ORGANIZATION OF REPORT

Chapter 2 describes the influence of the findings of Pearsons et al. (1996) on the design of
the present study. Chapter 3 describes the procedures used to select test signals and data collection
methods used in this subjective judgment experiment. Chapters 4 and 5 present study results and
discuss certain implications of the findings. Conclusions may be found in Chapter 6. A Glossary
is provided in Chapter 9 for the benefit of readers unfamiliar with some of the terminology of
regulatory acoustics. Appendix A contains instructions to test participants and the informed consent
form signed by each prior to participation in the study. Appendix B contains additional graphic and
tabular material relating to presentation levels. Appendix C contains tables of differences between
levels of variable and fixed signals at judged equal annoyance for the 30 metrics.



Table 1 Names and abbreviations of average, maximum, and duration-adjusted
noise metrics evaluated in present study
Spectral Weighting or Calculation AVG MAX Integrated Level

A-Weighted Sound Level " TAVA MXMA? ASEL
B-Weighted Sound Level TAVB MXMB BSEL
C-Weighted Sound Level TAVC MXMC CSEL
D-Weighted Sound Level' TAVD MXMD DSEL
E-Weighted Sound Level' TAVE MXME ESEL
Overall Sound Level' TAVOA MXMOA OASEL
Percelved Noise Level TAVPNL MXMPNL EPNL(NT)
Tone-Corrected Perceived Noise Level TAVPNLT MXMPNLT EPNL*
Perceived Level (Stevens)’ TAVPLS MXMPLS PLSSEL
Loudness Level (Zwicker)' TAVLLZ MXMLLZ LLZSEL

' Non-standardized measures.

2 The time interval used for maximum sound level, 500 ms, was between fast (125 ms) and slow (1000 ms), hence

MXMledium]A.

3 EPNL without tone correction.

4 Aspects of current calculations not in strict compliance with standardized definitions:

a) an averaging time of 0.5 sec (rather than 1 sec);
b) a reference time of 1 sec (rather than 10 sec).



2 BACKGROUND

All signals presented for annoyance judgments by Pearsons ef al. (1996) were filtered as
shown in Figure 1. This measure was taken to simulate indoor listening conditions in a manner
similar to the usual practice in earlier annoyance studies (e.g., Kryter, 1959; Kryter and Pearsons,
1963; Pearsons, 1968). A bias error was noted by Pearsons ez al. (1996) in all of the metrics used
to predict the point of subjective equality for the pairs of sounds presented to the subjects: the two
variable signals, 727T and SIMT, were on average 2 to 6 dB higher in level than the fixed aircraft
flyover signals when judged by the subjects to be equally annoying.

25

20

15

10

25 63 160 400 1000 2500 8300 18000
40 100 250 830 1600 4000 10000

One-Third Octave Band Center Frequency, Hz

Figure 1 Shape of filter used to approximate the noise reduction provided bya
typical one-family frame house with windows partly open.

This bias error may have been associated with the presentation of aircraft flyover noise as
heard indoors, since this measure increased the relative prominence of the low frequency portion of
the flyover spectra by about 8 dB, as shown in Figure 1. Aircraft noise is also heard outdoors at a
higher absolute level than indoors. Although the various metrics should have accounted for the
greater emphasis of low frequencies and the higher absolute level of the test signals, a further
empirical test of the annoyance of flyovers as heard outdoors was undertaken. Signals in the present
study were presented for judgment as heard outdoors; that is, as recorded in the field, without any
further intentional spectral shaping.
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3 METHOD

This chapter describes the procedures used to process and calibrate test signals, and the data
collection methods used to determine points of subjective equality of annoyance among them.
Unless otherwise noted, data acquisition conditions of the present study were identical to those of
Pearsons et al. (1996). Parts of the text of Pearsons et al. (1996) are paraphrased here for the

reader’s convenience.

3.1 SELECTION OF TEST SIGNALS

Table 2 summarizes the recorded flyovers and other signals presented for annoyance

judgments in the current study.

Table 2 Signals selected for paired comparison judgments.
SIGNAL SOURCE ABBREVIATION
Stage I Aircraft Landing Takeoff
Boeing B737-300 733L 7337
Boeing B747 747L TATT
Boeing B757 757L 7577
Boeing B767 767L 767T
Boeing B777 77T
Lockheed L1011 101L 1018* 101T
McDonnell Douglas DC10 D10L D10T
McDonnell Douglas MD11 M11L M11T
McDonnell Douglas MD82 M8z2T
Commuter Aircraft Landing Takeoff
BAEJetstream 31 J3iL J31T
de Havilland Dash-8 DS8T
Stage | and Il Aircraft and Other Sources Landing Takeoff Flyovers
Boeing B707 (Stage 11) 707L
Boeing B727 (Stage I} 727L 7277
Douglas DC7B (Stage 1) DC7L
Douglas DC8(J) (Stage [) DC8T
Simulated Aircraft Noise(short duratioh) SIMT
Simulated Aircraft Noise Stage-X ST5L ST6T
USAF B1B Flyover B1BF
USAF F111 Flyover F11F

*Spectrum modified to accentuate tone.




Table 3 List of identification numbers and test signals.

D # Abbr. D # Abbr.
1 101L 16 DS8T
2 101T 17 D10L
3 707L 18 D10T
4 727L 19 DC7L
5 7277 20 DCaT
3 733L 21 FI1F
7 7337 22 J31L
8 7470 23 31T
9 7477 24 MI1L
10 7570 25 MAAT
1 7577 26 MazT
12 767L 27 SIMT
13 7677 28 STSL
14 77T 29 ST6T
15 B1BF 30 101S

3.2 MEASUREMENT OF TEST SIGNALS

All signals were measured at nominal presentation levels at test participants’ head position
with a B&K Type 4155 (0.5") electret microphone and a B&K 2134 Sound Intensity Analyzer
functioning as a real-time spectrum analyzer. One-third octave band sound pressure levels between
25 Hz and 20 kHz produced by the spectrum analyzer were sampled every half second and stored
as digital time history files. These files subsequently served as the basis for calculation of the noise
metrics summarized in Table 1.

33 TEST [SUBJECTS — — . .~

i
A

Partlclpants were audlometncally screened to w1th1n 20dB of normal hearmg (audlometnc ,
zero) over the frequency range of 100 to 6,000 Hz prior to testing. All were retested at the end of
their sixth session. No substantive changes in hearing were observed upon completion of the
judgment tests. Flﬁeen of the thirty test participants who judged the relative annoyance of the test
signals were women ranging in age from 18 to 52, while fifteen were men ranging in age from 18
to 45. The average age of both female and male part1c1pants was 25 years. The thirty test
participants completed all six planned sessions. oo

3.4 SOLICITATION OF ANNOYANCE JUDGMENTS

A paired comparison procedure was adopted to permit direct and immediate judgments of
the relative annoyance of test signals. Subjects seated approximately one meter in front of a
loudspeaker in an anechoic chamber were instructed to judge whether the first or second signal
presentation of each trial was the more annoying. Figure 2 shows the temporal sequence of
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Signal 1_,,

<« Signal2_, Response Interval

10-30 sec 10-30 sec (variable duration)
.5 sec .5 sec
<= >
Time = >
Figure 2 Temporal sequence of intra-trial intervals.

intra-trial intervals. The durations of the signal presentation intervals were determined by the
durations of the signals themselves. The duration of the response interval was determined by the test
participant’s response latency. Test subjects in the study of Pearsons et al. (1996) had conducted
& practice trials prior to the main experiment. Because analyses of these earlier results revealed no
mcaningful difference between the trial and the experimental sessions, no practice trials were
administered in the current study.

Signal generation and presentation, as well as all other aspects of data collection, were under
rcal-time computer control. Figure 3 diagrams the signal generation and presentation hardware.
A mavumum likelihood estimation algorithm described by Green (1990, 1995) and by Zhou and
Green (1995) adaptively controlled signal presentation levels in real time, on the basis of test
participants’ ongoing decisions. The underlying psychometric function was assumed to be a
cumulative Gaussian with a standard deviation of 10 dB. The value of the estimated point on the
pss chometric function was 50%: the point of subjective equality of annoyance, at which individual
test subjects rated the comparison (variable level signal) more annoying 50% of the time and the
standard (fixed level) signal more annoying 50% of the time.

This point was approached by a binary search algorithm. The maximum step size permitted
betw een trials was 40 dB, while the minimum step size was 0.5 dB. The maximum permissible
signal presentation level was approximately 100 dB. Twelve trials were administered for each
Jdetermination of the relative annoyance of signal pairs, sufficient to yield a standard deviation of the
threshold estimate of approximately 4 dB.

A subset of the data (about half of the subjects for 8 signals) was collected in comparisons
of twenty rather than twelve trials. This measure was taken to determine whether the greater number
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AJD D/A Converter

Programmabile Attenuator

Anecholc Chamber

Figure 3 Diagram of adaptive signal generation and response recording system.

of trials would yield a less biased or more accurate estimate of the point of subjective equality of
annoyance between the fixed and variable level signals. =~ -

The annoyance of all 30 standard (fixed level) test signals was judged relative to that of two
comparison (variable level) test signals. One of the comparison (variable level) signals was a B-727
takeoff, while the other was a short duration (10 sec) simulation of an aircraft takeoff. The order of
presentation of the fixed and variable signals was random on a trialwise basis. The order of
presentation of signal pairs was independently randomized and fully interleaved. Testing was
conducted in separate sessions lasting approximately 25 minutes each.! Test participants were
required to leave the anechoic chamber between testing sessions. Their instructions may be found
in Appendix A.

A highly compressed, long-term digital recording of general urban noise mixed with shaped
Gaussian noise was reproduced at all times that test participants were present in the anechoic
chamber. The A-level of the background noise at the test participant’s head position was
approximately 50 dB. Figure 4 shows the spectral shape of the background noise averaged over a
1 hour period.

' Since test participants were not forced to respond within a fixed duration response interval, the pace of data
collection varied slightly from session to session.
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Figure 4 Spectrum of simulated urban background noise heard atall
times that test participants were present in the anechoic
chamber.
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4 RESULTS

This section describes the findings of the paired comparison judgments against the two
variable level signals.

4.1 DATA COLLECTION AND PROCESSING
4.1.1 Data Screening

The 25,680 paired comparison judgments collected during testing permitted 2,100 potential
determinations of points of subjective equality of annoyance. The basic datum analyzed was the
noise level of a variable signal when judged equal in annoyance to each fixed test signal. Two
sequences of fewer than 12 signal presentations occurred, either because of participants’ inattention
or because the limits of the signal presentation levels were exceeded. These sequences were
eliminated from consideration, leaving 2,098 judgments of points of subjective equality of
annoyance of fixed level and variable level signals for analysis.

4.2 TIME HISTORY OF TRIALS

Figure 5 shows the successive presentation levels of a pair of signals presented to sixteen test
subjects for annoyance judgment throughout a set of twenty trials. The initial difference in level of
the pair of signals was pre-set on first presentation at 15 dB. In this case, the level MXMA) of 727T
was 15 dB higher than the level (MXMA) of 727L.

Differences in presentation levels on subsequent trials were determined by the test
participants’ annoyance judgments. Since all of the participants judged 727T to be more annoying
than 727L on first presentation, at the second presentation of the pair of signals the level of 727T was
reduced by 40 dB to a level 25 dB below the 727L. The participants then judged 727L to be the
more annoying. At the third presentation, the level of 727T was increased by 20 dB, resulting in a
difference of 5 dB between the pair of signals (that is, 727T was presented 5 dB lower in level than
727L). :

Participants were no longer unanimous about which of the two signals was the more
annoying at the third presentation of the pair of signals. For those who judged 727T to be more
annoying, 727T was reduced by 10 dB at the fourth trial, resulting in a difference in presentation
level of 15 dB. For those who judged 727L to be more annoying, 727T was increased by 10 dB at
the fourth trial, resulting in a difference in presentation level of 5 dB. This process continued
through the 20th trial, to yield an average difference in presentation levels of 2.2 dB, reported as the
subjective point of equality.

The average difference at 12 trials was 1.4 dB in this example. At 20 trials the average
difference was 2.2 dB. The use of 12 trials as a basis for determining the point of subjective equality
was considered reasonable since the difference in the two averages was small (0.7 dB) with respect
to the standard deviation of the sixteen subjects’ judgments. Table 4 shows similar summary results
for 7 other signal pairs, further confirming that 12 trials sufficed as a reasonable basis for
determining the point of subjective equality of annoyance. (Estimates of the point of subjective
equality were nonetheless based on the entire set of trials — either 12 or 20 — since reducing the

11



numbers of trials to 12 did not s1gn1ﬁcantly affect the reported levels of the point of subjective
equality.)

20
[ss]
=]
s 107+
>
V]
-
s
£ ol
[=4
[
(73
£
[ -10 T
E 20 +
-30 % ; ; i = i ' "
0 5 10 15 20
Presentation Number
Figure 3 Differences in presentation levels of signals 727T and 727L for20
successive trials of 16 test participants.
Table 4 Summary of differences in presentation levels of 727T or SIMT and test
signal at 12 and at 20 trials.
; AVERAGE DIFFERENCE (in dB) : A"ERAG%'?LFBF)ERENCE
! NUMBER OF NUMBER OF
SIGNAL | TEST Difference TEST _Difference
10 | PARTICIPANTS At 42 At 20 between | PARTICIPANTS between results
| (SUBSET) trials trials | results for 20 (ALL) At12trials - for “all” and
: and 12 trials “subset” of test
! i R participants
s ' 16 1.4 22 07 30 2.0 0.2
s 14 7.0 6.7 0.4 30 7.3 0.6
rETLS 16 9.8 9.6 0.2 30 8.8 0.8
a18F.7 14 25 0.9 16 30 0.0 0.9
DS8T.S 16 5.5 5.2 0.3 30 5.4 0.2
D0L-T 14 8.3 86 0.4 30 8.9 0.3
DCTL-S i 14 5.6 53 -0.3 30 5.8 0.5
101S-7 . 16 8.7 9.8 1.1 30 6.7 -3.1
Grand Average leferenoe -0.1 Grand Average Difference -0.4

. The character' foltowm'  the hyphen designates the variable test signal ("7' 727T “g" = SIMT) judged more or less a'nnoyifn'g‘: o
than the fixed signal (designated by the first four characters).
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4.3 TFORM OF GRAPHIC DATA PRESENTATION

Grand means for all test participants for points of subjective equality of annoyance are
plotted throughout this report as differences between the level of the variable signal and that of the
fixed signal to which it was judged equally annoying. The magnitudes of these differences vary for
the 30 noise metrics calculated for each signal. A noise metric that perfectly predicted annoyance
would exhibit a 0 dB difference between the variable and fixed signals at the point of subjective
equality of annoyance.

Figure 6 plots (as filled circles) grand mean differences for determinations of the points of
subjective equality between both variable signals (B-727 takeoff and the simulated aircraft takeoft)
and all fixed test signals (on the ordinate) against noise metrics (on the abscissa). The extrema about
each filled circle shows the range of + 1 standard deviation for all comparisons. Figures 7 and 8 are
comparable graphs showing similar trends for the two comparison signals separately. The noise
metrics are ordered on the abscissa in groups of three. Within groups, the leftmost value plotted is
the average metric, the middle value is the maximum metric, and the rightmost is the time integrated
metric. Groups of metrics are positioned along the abscissa in rough order of accuracy of prediction,
with the least accurate metrics toward the left of the figure and the most accurate metrics toward the
right.

Figure 9 shows points of subjective equality of annoyance of test signals judged against
themselves. Figure 9 arbitrarily displays the results in terms of differences in maximum A-weighted
level (MXMA); since the two signals compared are identical, any other metric would show the same
pattern. The average differences of less than 1 dB for 30 test participants demonstrate the accuracy
of the maximum likelihood estimation algorithm for determining points of subjective equality of
annoyance in paired comparison testing.

The repeatability of annoyance judgments by this method was also confirmed empirically.
A subset of the signals was repeated during the test for all or a subset of test participants. A list of
the test signals is shown in Table 5. The table also shows the difference between the comparison
signal and the standard signal in terms of MXMA for the initial, second and third sets of trials, and
the number of trials and participants associated with the results. Figure 10 illustrates the results in
graphical form, plotting the repeat results against initial results. The sloping line in the figure
represents perfect replication. Grand mean differences in points of subjective equality of annoyance
for repeated determinations with the same signal pairs were typically less than 1 dB.
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Table 5 Comparison of repeated results for selected test signals in terms of
differences in MXMA [(727T or SIMT) - test signal].

DIFFERENCE
( BETWEEN
INITIAL RESULTS SECOND RESULTS “THIRD RESULTS INTTIAL AND
SUBSEQUENT
" 'RESULTS
SICigAL Participants | Trials | Difference | Participants | Trials | Difference | Parficlpants Trials | Difference | Second | Third
727L-7 30 12 1.92 16 20 216 0.24
747L-S 30 12 7.22 14 20 6.65 057
767L-S 30 12 8.60 30 12 8.15 186 12 8.51 0.45 0.09
767T-S 30 12 6.84 30 12 7.99 1.15
B1BF-7 30 20 0.22 14 20 0.61 0.82
DS8T-§ 29 12 505 16 20 5.21 0.16
D10L-7 30 12 9.39 14 20 8.64 275
DC7L-S 30 12 6.51 14 12 333 -3.18
M11L-7 30 12 7.86 30 12 7.71 0.15
SIMT-7 30 12 112 30 12 276 -1.64
ST5L-S 30 12 8.12 30 12 9.35 1.23
1015-7 30 12 6.01 30 12 5.06 186 20 10.51 0.04 450
Average 20.92 12.67 552 2233 15.33 5.25 0.26 2.20
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Figure 10 Comparison of repeat determinations with first determinations of differences

between 727T or SIMT and test signal at judged equal annoyance.
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4.4 DETAILS OF PAIRED COMPARISON JUDGMENTS

Findings are plotted in the remainder of this report in terms of the three noise metrics of
greatest practical concern: Maximum A-level (MXMA), Effective Perceived Noise Level (EPNL),
and a sound exposure type of measure based on Zwicker’s Loudness Level (LLZSEL). The first
metric was selected as a simple and widely understood one; the second because it is the metric of
choice in aircraft noise certification; and the third because it exhibited the smallest differences
between standard and comparison signals at points of subjective equality of annoyance. Appendix C
contains complete tables of these points of subjective equality of annoyance averaged over all test
participants for the convenience of readers wishing to analyze these findings in other ways.

4.4.1 Comparisons Against the B-727 Takeoff

Points of subjective equality of annoyance for each of the thirty individual test participants
arc plotted in Figure 11 for comparisons made against the recorded B-727 takeoff as a general
indication of the range of judgments. (Note that many of the individual data points are plotted over
onc another.) The results are plotted in terms of MXMA for each of the test signals identified in
Tables 2 and 3. Figure 11 also contains the comparison of this signal against itself (at Signal 5), with
somew hat smaller dispersion of judgments than for other signals.

DIFFERENCE, dB

0 2 4 6 8 10 12 14 18 18 20 22 24 286 28 D
TEST SIGNAL ID NUMBER

Figure 11 Difference in maximum A-level of the test signal when
judged equally annoying to 727T (727T - test signal).

Figures 12 through 17 show grand means of points of subjective equality of annoyance
results for the 30 test signals, separated by operation type and noise source category as shown in
Table 2. Two graphs are presented for each noise metric. Figures 12 and 13 show the averaged
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results in terms of MXMA, Figures 14 and 15 show the averaged results in terms of EPNL, and
Figures 16 and 17 show the averaged results in terms of LLZSEL. The first of the graphs in each

set presents

findings for comparisons of takeoffs, and the second for comparisons of landings and

flyovers. Test signals corresponding to Stage I aircraft are presented first, followed by those for
Stage I and I1I and commuter (turboprop) aircraft. Comparisons involving simulated future aircraft
for which only simulations of takeoffs and landings were available are presented last. The results
are ordered by decreasing EPNL differences within each aircraft stage, regardless of the metric under
consideration.
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Figure 12

1017 M8z2T J3T
7T 747T SIMT
7577 7377 DSeT ST6T

TEST SIGNAL ID

Results for takeoffs in terms
when 727T is judged equally annoying to the test signal (727T - test signal).
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when 727T is judged equally annoying to the test signal (727T - test signal).

4.4.2 Comparisons Against the Simulated Aircraft Takeoff Signal

Figures 18 through 24 show averaged judgments of points of subjective equality of
annoyance for comparisons against the simulated aircraft takeoff. Figure 18 summarizes findings
in terms of MXMA for cases in which the takeoff was compared to the various fixed signals. Signal
identification numbers for the fixed signals correspond to those listed in Tables 2 and 3. Figures 19
and 20 show the averaged results for each of the test signals in terms of MXMA. Figures 21 and 22
and Figures 23 and 24 show the averaged results for EPNL and LLZSEL, respectively.

DIFFERENCE, dB

0 2 4 6 B8 10 12 14 18 18 20 22 24 26 28 30
TEST SIGNAL ID NUMBER

Figure 18 Difference in maximum A-level of the test signal when judged equally
annoying to SIMT (SIMT - test signal).
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4.4.3 Comparison with Prior Findings

Figures 25 and 26 compare averaged judgments of subjective equality of annoyance of
overflights as heard indoors (measured by Pearsons et al,, 1996) with those of the current test.
Figure 25 compares findings when the 727 takeoff (727T) served as the variable signal, while
Figure 26 compares findings when the simulated takeoff (SIMT) served as the variable signal. If
no difference had been observed between annoyance judgments for signals presented as heard
indoors and outdoors, all of the points would have fallen along the angle bisector in all of these
figures.

15
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5 0 5 10 15
TEST 1 DIFFERENCE, dB

Figure 25 Comparison of Test 2 (outdoor) results with Test 1 (indoor) results using
727T as the variable signal.
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Figure 26 Comparison of Test 2 (outdoor) results with Test 1 (indoor) results using

SIMT as the variable signal.
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5 DISCUSSION

5.1 PERFORMANCE OF CLASSES OF NOISE METRICS AS
PREDICTORS OF ANNOYANCE JUDGMENTS

Noise metrics that accord relatively little emphasis to low frequency energy generally
behaved comparably as predictors of the judged annoyance of the aircraft noise test signals. As
shown in Figures 6 through 8, metrics that accorded relatively greater emphasis to low frequency
energy (B, C, and Flat or Overall) were less effective as predictors of annoyance judgments. These
means and standard deviations are in agreement with those observed by Pearsons et al. (1996). As
in the prior study, the figures also show that metrics based on Zwicker’s Loudness Level predicted
annoyance judgments with smaller offsets and standard deviations than less complex metrics.
Metrics sensitive to signal duration afforded slightly improved performance as predictors of
annoyance, even though the range in duration of test signals was small (10-20 seconds).

Although the range of 2 to 6 dB in standard deviations across test signals was as expected
for the “better metrics” shown in Figures 6 through 8, the mean differences of 2 to 8 dB between
signals judged equally annoying was unanticipated. It is apparent for these reasons that this offset
is not an artifact of the estimation algorithm itself:

(1) test participants were able to come within 1 dB of matching the annoyance of test
signals to themselves;

(2) repetition of test participants’ average results were typically within 1 dB of the
initial results; and

(3) the offset from 0 dB was notably smaller for an SEL-like variant of Zw1cker s
Loudness Level metric than for the remainder of the metrics.

The slight superiority of the Zwicker metrics as predictors of annoyance does not appear to
be artifactual.

5.2 DIFFERENCES IN ANNOYANCE AMONG SETS OF TEST
SIGNALS

Indications of systematic under or over-prediction of annoyance among sets of similar types
of signals are noteworthy. For example, a comparison of the findings for the three noise metrics
shown in Figures 11 through 17 and Figures 19 through 24 suggests that annoyance of takeoff noise
is more accurately predicted by the three metrics than the annoyance of landing noise. This effect
is particularly evident in comparisons against the recorded B-727 takeoff.

The test signals that simulated future aircraft takeoffs and landings produced results quite
different from most of the other test signals. EPNL differences of 8-10 dB were observed in these
comparisons, suggesting that EPNL considerably underestimates the annoyance of such artificial
signals. However, EPNL also underestimated the annoyance of a 707 landing by 8-10 dB.
Underestimates of the annoyance of the same test signal were also noted for other noise metrics.

Results for the commuter aircraft test signals (DS8T, J31T, and J31L) were comparable to
the results for the Stage III aircraft. The differences in EPNL at judged equal annoyance were
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generally smaller than for most of the Stage III aircraft results except for the comparison of SIMT
and J31L. Differences were no greater than the larger differences exhibited by the Stage Il aircraft
results.

A mixed 2 x 2 x 3 between-within-within subjects ANOV A was performed on mean PSE for
annoyance to compare the results for Stage III aircraft with those of earlier Stage I and Stage II
aircraft. The factors evaluated were type of aircraft (Stage III vs. Stages I and II), type of standard
stimulus against which the comparison was made (727T vs. SIMT), and metric (EPNL, MXMA, and
LLZSEL). Each case was a single aircraft, with responses averaged over all 30 subjects. All
assumptions of the analysis were met, except heterogeneity of covariance for the metric error term.
Because application of the Huynh-Feldt adjustments did not substantively affect the findings, the
unadjusted results are reported. Table 6 presents the results of the analysis.

Table 6 Summary of results of ANOVA performed on mean point of subjective
equality for annoyance.
SOURCE 8§ df MS F PROBABILITY | PARTIAL n?
BETWEEN AIRCRAFT
Aircraft Type 0.01 1 <0.01
Error: Alrcraft Type 55801 | 19 | 2016 | <00 0.98
WITHIN AIRCRAFT
Metric 61.37 2 30.69
Metric by Aircraft Type 0.42 2 021 | 0 o 0.47
Error: Metric 70.22 38 1.85 ) :
Standard 6.59 1 6.59 142 0.25
Standard by Aircraft Type 0.16 1 0.16 0'03 0.86
Metric by Standard 17.33 2 867 | aziEa <0.04
Metric by Standard by Aircraft Type <0.01 2 <0.01 0 7'2 0 '50 0.95
Error: Metric by Standard 0.94 38 <0.01 ) )

No evidence of an effect of aircraft type was found in this analysis. Differences between
Stage I and Stages I or II aircraft did not appear, nor did aircraft type interact with type of metric
or the stimulus chosen as standard.

The only reliable effects found were associated with metric. The main effect of metric was
statistically significant, F(1,38)=16.61,p<0.01. In general, PSEs were highest for MXMA (mean
= 4.85) and EPNL (mean = 3.95), and were lowest for LLZSEL (mean = 2.84), the least biased
metric. However, the pattern differed for the two standard stimuli, F(2, 38) = 351.63, p <0.01, as
seen in Figure 27, where data are averaged over aircraft type. Little difference between PSEs was
observed for EPNL and LLZSEL when 727T served as the standard signal, but LLZSEL produced

much smaller (less biased) PSEs than did EPNL when simulated aircraft noise was used as the -
standard signal.
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5.3 COMPARISON OF CURRENT RESULTS WITH THOSE OF
PRIOR TEST

Even though higher signal presentation levels (characteristic of outdoor listening) were
employed in the current study, the pattemn of findings closely resembles that of Pearsons et al.
(1996). A direct comparison of the indoor and outdoor results in terms of the difference in levels
at the points of equal annoyance for those test signals that were used in both tests is nonetheless of
interest. Figures 25 and 26 show such comparisons. The line in the figures represents complete
agreement in the results of the two tests. The fact that the points lie on both sides of the line indicate
a lack of systematic differences int he two studies. In general, agreement is within 5-8 dB.

Figure 28 plots grand mean differences of the current study and of Pearsons et al. (1996) for
determinations of the points of subjective equality between both variable signals (B-727 takeoff and
the simulated aircraft takeoff) and all fixed test signals (on the ordinate) against noise metrics (on
the abscissa).
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Figure 28 Average difference (1 standard deviation) in noise metric of all test signals

when judged equally annoying to both 727T and SIMT [(727T - test signal)
and (SIMT - test signal)] for combined Pearsons et al. (1996) and current
study.

5.4 RELATIONSHIPS AMONG NOISE METRICS

Table 7 is a matrix of product-moment correlations among all noise metrics at the signal
levels corresponding to points of subjective equality of annoyance for all determinations made both
by Pearsons ef al. (1996) and in the current study.? As is typical for a set of signals with reasonably
similar spectra, correlations among noise metrics are uniformly high. Although the number of cases
was marginal, a principal components analysis of the correlation matrix was undertaken to determine
the factorability of the correlation matrix, and the number of factors that might plausibly be
extracted. All of the bivariate correlations were significantly different from zero; in fact, none was
smaller than 0.70. The principal components analysis yielded a two factor solution.

Principal factors extraction with varimax rotation was then performed to produce atwo factor
solution accounting for 91% of the variance in the relationships among noise metrics. One of the
factors, on which metrics such as B- and C-weighted SEL and time average metrics (as well as
several others) loaded highly, seemed to reflect sensitivity to low frequency energy. The other
factor, on which metrics such as maximum A-, D- and PNL metrics loaded highly (among others)

? Fixed signal levels from both studies were adjusted to create signal levels corresponding to points of subjective
equality of annoyance that were equal to the average of the variable 727 signal used in the current study.
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seemed to reflect lesser sensitivity to low frequency energy. The SEL variant of the Zwicker metrics
was not as closely associated with either of the dimensions as those noted above.

These findings should not be over-interpreted, since the correlations among noise metrics are
dependent in part on the similarity of spectral shapes of the test signals presented for subjective
judgment. However, it is clear from the information in Table 7 that a much smaller sub-set of noise
metrics would suffice for most purposes in further studies of the annoyance of sets of aircraft
flyovers.

5.5 IMPLICATIONS OF FINDINGS

A duration-adjusted variant of Zwicker’s Loudness Level was observed to offer minor
improvements in accuracy and precision over EPNL as a predictor of the annoyance of aircraft noise.
Averaged over all comparisons, the difference between fixed and variable test signals was 4.0 dB
for EPNL, but only 3.2 dB for LLZSEL. Further, the standard deviation for EPNL was 3.0 dB, but
only 2.4 dB for LLZSEL. In other words, EPNL underestimates the annoyance of the test signals
(most of which were produced by Stage III aircraft) by 4.0 dB, while LLZSEL underestimates the
annoyance of these aircraft by only 3.2 dB.

The overall pattern of findings thus suggest that while EPNL may not be the single most
effective predictor of the annoyance of aircraft overflights, no other of the tested metrics offers more
than a marginal improvement in accuracy or precision of prediction. It also seems unlikely that any
other relatively simple noise metric that could be devised would improve greatly upon the
performance of available noise metrics.

Other findings, such as the apparent underestimation of the annoyance of landing with
respect to takeoff noise, and the underestimation of the annoyance of noise from simulated future
aircraft takeoffs and landings, may merit further investigation, since the metric used to certify noise
from aircraft overflights should accurately predict the annoyance of both takeoff and landing noise,
regardless of engine type. As noted above, however, the correlations among noise metrics are so
high that it is doubtful that a further study of the annoyance of recorded flyover noises alone could
provide enough experimental leverage to draw any finer distinctions among their ability to predict
annoyance. Any further study of this nature should be based on judgments of the annoyance of
synthetic signals created analytically to minimize correlations among the noise metrics of principal
interest.
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6 CONCLUSIONS

The following observations may be made about the current data set of subjective judgments
of the annoyance of aircraft overflight noise.

1. The relative performance of the various noise metrics as predictors of annoyance
of Stage II and Stage III aircraft was indistinguishable.

2. Flat, C-weighted and B-weighted metrics afforded the least accurate and precise
estimates of the annoyance of overflights.

3. A-, D-, and E-weighted metrics were of comparable accuracy as predictors of the
annoyance of overflights.

4. Time-integrated metrics provided slightly more accurate and precise estimates of
the annoyance of aircraft overflights than maximum level measures, although
differences in test signal durations were minor.

5. A time-integrated variant of Zwicker’s Loudness Level metric provided the most
accurate and precise prediction of aircraft overflight annoyance.

6. The results of comparisons of test signals against a B-727 takeoff comparison
were comparable to those observed in comparisons against a simulated aircraft
takeoff, although the results using a simulated aircraft takeoff provided somewhat
more discrimination among metrics.

7. The annoyance of simulations of takeoff and landing noise of future aircraft was
most greatly under-predicted by all of the metrics under evaluation.

8. Good agreement between indoor and outdoor listening conditions suggested no
systematic bias between the current study and that of Pearsons et al. (1996) in
obtaining predictions of annoyance in either environment.

9. Small differences in average results between 12 and 20 trials suggested negligible
benefit in administering the additional trials.

10. The annoyance of commuter aircraft noise was comparable to that of Stage III
aircraft.
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9 GLOSSARY

Acoustic terms in this Glossary are defined as by American National Standard S1.1-1994 Acoustical
Terminology.

ANOVA. Analysis of variance.

C-weighted sound exposure level. Sound exposure level, as defined in Part 1, where C-weighted
sound pressure is used instead of A-weighted sound pressure. Unit, decibel; abbreviation, CSEL,
symbol, L.

energy average. Colloquial term for time-mean-square average of a series of sound signals.

energy summation. Colloquial term loosely used to indicate addition of noncoherent sound signals
by the sum of the squares of their sound pressures or sound exposures.

maximum sound level; maximum frequency-weighted sound pressure level. Greatest fast (125-
ms) A-weighted sound level, within a stated time interval. Alternatively, slow (1000 ms) time-
weighting and C frequency-weighting may be specified. Unit, decibel (dB); abbreviation, MXFA;
symbol, L, (or C and S).

perceived noise level. Frequency-weighted sound pressure level obtained by a stated procedure that
combines the sound pressure levels in the 24 one-third octave bands with midband frequencies from
50 Hz to 10 kHz. Unit, decibel (dB); abbreviation, PNL; symbol, Lp,.

NOTE - Procedures for computing perceived noise level are stated in Federal Aviation Regulation Part 36, Noise
Standards: Aircraft Type and Airworthiness Certification, Appendix B, and in Intenational Civil Aviation
Organization Annex 16, Volume 1, Aircraft Noise, Third Edition, July 1993.

PSE. Point of subjective equality (of annoyance judgments).

sound exposure. Time integral of squared, instantaneous frequency-weighted sound pressure over
a stated time interval or event. Unit: pascal-squared second; symbol, E.

NOTES

1 If frequency weighting is not specified, A-frequency weighting is understood. If other than A- frequency
weighting is used, such as C-frequency weighting, an appropriate subscript should be added to the symbol; i.e., E.

2 Duration of integration is implicitly included in the time integral and need not be reported explicitly. For the
sound exposure measured over a specified time interval such as one hour, a 15-hour day, or a 9-hour night, the
duration should be indicated by the abbreviation or letter symbol, for example one-hour sound exposure (1HSE or
E,,) for a particular hour; day sound exposure (DSE or E,) from 0700 to 2200 hours; and night sound exposure (NSE
or E,) from 0000 to 0700 hours plus from 2200 to 2400 hours.

3 Day-night sound exposure (DNSE or £,,) for a 24-hour day is the sum of the day sound exposure and ten times
the night sound exposure.

4 Unless otherwise stated, the normal unit for sound exposure is the pascal-squared second.
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sound exposure level. Ten times the logarithm to the base ten of the ratio of a given time integral
of squared instantaneous A-weighted sound pressure, over a stated time interval or event, to the
product of the squared reference sound pressure of 20 micropascals and reference duration of one
second. The frequency weighting and reference sound exposure may be otherwise if stated explicitly.
Unit, decibel (dB); abbreviation, SEL; symbol, L ;.

NOTE - In symbols, (A-weighted) sound exposure level is:

T
Lye=10 lg{[J PADA1 VP 1}
=10 Ig( E/E,)
=L+ 101g( T

where p. is the squared instantaneous A- weighted sound pressure, a function of time ¢, for gases p, = 20 uPa; 1, =
1 s; £ is sound exposure; E, = pit, = (20 uPa)’s is reference sound exposure.

sound level; weighted sound pressure level. Ten times the logarithm to the base ten of the ratio
of A-weighted squared sound pressure to the squared reference sound pressure of 20 nPa, the
squared sound pressure being obtained with fast (F) (125-ms) exponentially weighted time-
averaging.  Alternatively, slow (S) (1000-ms) exponentially weighted time-averaging may be
specified; also C-frequency weighting. Unit, decibel (dB); symbol L,, L.

NOTES

1 In symbols, A-weighted sound level L, (¢) at running time ¢ is::

Lot = 101g{{(177) [ p2@®E D" dE)/ ps)

where T is the exponential time constant in seconds, § is a dummy variable of integration, p (£) is the squared,
mstantaneous, time-varying, A-wei Ehted sound pressure in pascals, and p, is the reference sound pressure of 20 ./Pa.
Drvision by time constant T yields the running time average of the exponential-time-weighted, squared sound-pres-

surc signal. Initiation of the running time average from some time in the past is indicated by -= for the beginning
of the integral.

2 ANSI S1.4-1983, American National Standard Specification fr’or Sound Level Meters, gives standard frequency
wcightings A and C and standard exponential time weightings fast (F) and slow (S).

sound pressure; effective sound pressure. Root-mean-square instantaneous sound pressure at a
point, during a given time interval. Unit, pascal (Pa). e

NOTE - In the case of periodic sound pressures, the interval is an integral number of periods or an interval that is
long compared to a period. In the case of non-periodic sound pressures, the interval should be long enough to make
the measured sound pressure essentially independent of small changes in the duration of the interval. = .-

sound pressure level. (a) Ten times the loga;Lthm,tQ the base ten of the ratio of the time-mean-

square pressure of a sound, in a stated frequency band, to the square of the reference sound pressure
in gases of 20 wPa. Unit, decibel (dB); abbreviation, SPL; symbol, L,.
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time-average sound level; time-interval equivalent continuous sound level; time-interval
equivalent continuous A-weighted sound pressure level; equivalent continuous sound level.
Ten times the logarithm to the base ten of the ratio of time-mean-square instantaneous A-weighted
sound pressure, during a stated time interval 7T, to the square of the standard reference sound
pressure. Unit, decibel (dB); respective abbreviations, TAV and TEQ; respective symbols, L, and

LAeqT'

NOTES

1 A frequency weighting other than the standard A-weighting may be employed if specified explicitly. The
frequency weighting that 1s essentially constant between limits specified by a manufacturer is called flat.

2 In symbols, time-average (time-interval equivalent continuous) A-weighted sound level in decibels is:

T
Lyr=101g{[(V/ T)OJ. PA(NA1)/p5}

= LAeqT

where p? is the squared instantaneous A-weighted sound pressure signal, a function of elapsed time ¢, in gases
reference sound pressure p, = 20 «Pa; T'is a stated time interval.

3 In principle, the sound pressure signal is not exponentially time-weighted, either before or after squaring.
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APPENDIX A Instructions and Consent Form for Test
Participants

1  Imstructions to Test Participants

Your basic job will be to listen carefully to pairs of sounds that you will hear while seated
in a special sound room, and to decide right after hearing each pair of sounds whether the first or the
second of the sounds was the more annoying to you. Each pair of sounds is a “trial.” Several dozen
trials will be heard in each “session.” You will have a rest break between each session, during which
you should leave the sound room for five minutes.

A computer will select the pairs of sounds that you will hear, and record your decisions about
which of the pair was the more annoying. The computer needs information about who you are, when
to start playing the sounds, and so forth. This information will be entered by the experimenter just
prior to each session.

1.2 Beginning the Experiment

Once you have moved into the room where the experiment will take place, sit down in the
chair facing the speaker and computer screen. You will find a computer “mouse” on a pad on the
armrest of the chair. You will use this mouse to tell the computer when to play sounds and which
of a pair of sounds is the more annoying.

The screen will ask you “Are you ready to begin Experiment...” As soon as you are
comfortably seated and ready to start, move the mouse arrow to the “Yes” box and click the left
mouse button once. This will start the test session.

You will be asked to judge the annoyance of several different pairs of sounds during each
test session. Your job will always be to listen carefully to each sound in each pair, and to judge the
noisiness of the sounds as you would if you heard them in your home twenty to thirty times a day.
After the second sound of each pair ends, you will then be asked which of the two was the more
annoying. The presentation of each pair of signals will look like this on the screen:

1. The screen will say “Experiment in Progress” and “Listen now for sound [1].” The computer
will play the first sound.

2. Then the screen will say “Listen now for sound [2]” and the computer will play the second
sound.
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3. 'Once the second sound has finished playing the screen will say “Which sound was more
annoying?” and you will see two blue rectangles on the screen: one that says “First” and
another that says “Second.” Use the mouse to position the arrow over the first or second
rectangle to tell the computer which sound you felt was more annoying. Then press the left
mouse button. You will hear the next pair of sounds shortly after you press the left mouse
button.

Each test session will last approximately 25 minutes, after which you should stand up, leave
the sound room, and take a five minute break. You will be expected to finish four such sessions each
day that you take part in this study, for a total of 2 hours per day.

When a test session is over, the computer will present a small box that says “You have
finished Experiment ...” and an OK button. Click the OK button using the left mouse button, as soon
as you are ready to continue. If there are more sessions scheduled for the day, a window will appear
asking if you are ready to begin. Don’t press the “Yes” button until you come back from your break
and are ready to continue. Press the “Yes” button to continue with the next session after you are
sitting down and are comfortable again.

If you have completed your four sessions for the day, answer “No” to the “Are You Ready
for Experiment...” question.

1.3 Additional Information

If you feel uncomfortable in the sound room at any time, you may simply stand up, open the
door and leave the room.

If the computer screen asks you to get the experimenter at any time during the session, you
should stand up, open the door, and find the experimenter.
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CONSENT FORM FOR ATIRCRAFT NOISE ANNOYANCE STUDY

BBN Systems and Technologies (BBN) is conducting a laboratory study of the annoyance of the noise
of certain aircraft flyovers, and would like you to take part in this research project. This form explains what is
expected of people who wish to take part in this study. Please sign this form at the bottom after you have read it
if you would like to take part in this study.

I understand that I will be asked to listen attentively to pairs of aircraft overflights,
each lasting as long as 30 seconds, and to indicate which of the pair of sounds is the
more annoying. Since the aircraft overflights will be heard at levels typical of airport
communities, some may be uncomfortably loud. My participation in this test will
not, however, pose any meaningful risk of hearing damage.

I understand that I will be given an audiogram prior to the start of my participation
in these listening tests, and upon completion of testing. No other audiometric or
medical services will be provided in connection with this testing.

All listening will be done in an anechoic chamber. Each testing session will last
approximately two hours, with five minute breaks (during which I will leave the
ancchoic chamber) provided every half hour. I will also be free to leave the anechoic
chamber at any time that I wish. I further understand that I may change my mind
about taking part in this study at any time. IfI decide to stop taking part in the study,
1 will be paid for the amount of time that I did take part.

1 will be expected to take part in several such listening sessions, and will be paid at
a daily rate of $20.00 for each day of testing.

I centify that | am 18 years of age or older, that | have read the information on this
page, and that | want to take part in this study of aircraft noise annoyance.

Sygned Print Name

Date Phone No.
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APPENDIX B Spectra of Test Signals at Maximum
A-Level for Comparison with Boeing 727
Takeoff and Simulated Takeoff Test
Signals
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Figure 29 Test signal 1 — Lockheed L1011 Ilanding (101L)
presentation levels.
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Figure 30 Test signal 2 — Lockheed L1011 takeoff (101L)
presentation levels.
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Figure 47 Test signal 19 — Douglas Corporation DC7 landing (DC7L)
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Figure 48 Test signal 20 — Douglas Corporation DC8 takeoff (DC8T)
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Figure 49 Test signal 21 — F111 flyover (F11F) presentation levels.
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Figure 50 Test signal 22 — Jetstream 31 landing (J31L) presentation
levels.
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Figure 51 Test signal 23 — Jetstream 31 takeoff (J31T) presentation
levels.
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Figure 52 Test signal 24 — McDonnell Douglas MD11 landing (M11L)
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Figure 53 Test signal 25 — McDonnell Douglas MD11 takeoff (M11T)
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Figure 54 Test signal 26 — McDonnell Douglas MD82 takeoff (M82T)
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Figure 55 Test signal 27 — simulated takeoff (SIMT) presentation
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Figure 57 Test signal 29 -— simulated Stage X aircraft takeoff (ST6T)
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